REGIOSPECIFIC NEIGHBORING-GROUP PARTICIPATION BY DITHIOCARBAMATE FUNCTION DURING BROMINATION OF γ -SUBSTITUTED S-ALLYL N,N-DIMETHYLDITHIOCARBAMATES 1)

Kazuhisa HIRATANI, Takeshi NAKAI*, and Makoto OKAWARA

Research Laboratory of Resources Utilization,

Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

Bromination of the title compounds ($\underline{1}$) resulted in the formation of the corresponding 2-dimethylamino-4-bromomethyl-1,3-dithiolan-2-ylium bromide ($\underline{2}$) via regiospecific (S-5) participation by the dithiocarbamate function, irrespective of substitution on the γ -carbon atom. This is in contrast to the C-protonation of $\underline{1}$ in which the ratio of S-5 vs. S-6 depends on the γ -substitution.

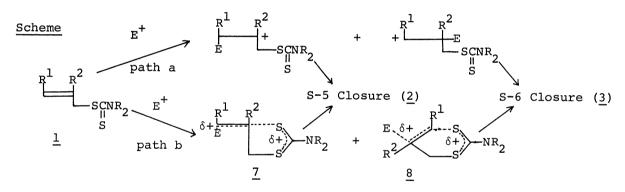
Formation of heterocyclic carbonium ions via neighboring-group participation by various types of functions has received considerable attention. 2)

Neighboring-group participation during electrophilic addition of allylic system

I (X,Z = heteroatoms) is of particular interest in view of the possibility for two discrete pathways for participation, X-5 and X-6 closure, as shown below.

A few of the reports^{3,4)} have shown that the X-5 cyclization took place exclusively upon electrophilic olefin addition in some particular systems in which the β -carbon atom is more highly substituted than the γ -carbon. However, the question

of X-5 vs. X-6 closure still remains unsolved, 2 , 4 b) especially in γ -substituted allyl systems in which the unsaturated carbon atoms are equally substituted. Herein we wish to report that the cyclization during bromination of variously substituted S-allyl N,N-dimethyldithiocarbamates proceeded specifically at the β -carbon atom via-S-5 participation by the dithiocarbamate function, 5 irrespective of substitution on the γ -carbon atom.


When bromine was added dropwise to a solution of S-crotyl dithiocarbamate (1a) in carbon tetrachloride at O°C, 2-dimethylamino-4(α -bromoethyl)-1,3-dithiolan-2-ylium bromide (2a) precipitated out immediately. Ion 2a was identified by its NMR spectrum (CF₃COOH), which exhibited a doublet at δ 1.93 (3H, $CBr-CH_3$), a doublet at 3.70 (6H, N(CH₃)₂), two doublets at 4.15 and 4.14 (2H, S-CH₂), and two multiplets at 4.44 - 4.76 (1H, CBr-H) and 4.88 - 5.16 (1H, S-CH ζ). Dithiolanylium ion formation proved to be general and essentially quantitative as illustrated by the cyclization upon bromination of dithiocarbamates $1a-e^{6}$ to the respective dithiolanylium ions $2a-e^{7}$ (see Table).

The assignment of ions $\underline{2}$ to the five-membered ring (S-5) structure, not to the six-membered $\underline{3}$ (S-6 structure), was based on the following facts:(1) the NMR spectra⁷⁾ of ions $\underline{2}$ were more consistent with the S-5 structure;(2) comparisons of the frequencies of the ν (C=N) bands in the IR spectra of $\underline{2}$ with those of spectral reference ions $\underline{4}$ and $\underline{5}^{8)}$ (see Table) unequivocally established the S-5 structure for $\underline{2}$;(3) UV-spectral comparisons of $\underline{2}$ with $\underline{4}$ and $\underline{5}^{8)}$ also supported the X-5 structure for $\underline{2}$.

<u>Table</u>		Yields and Physical Properties of $\frac{2}{2}$		
Ion	Yield %	Mp °C	IR(KBr) v(C≃N), cm ⁻¹	UV(EtOH) λ max, nm
<u>2a</u>	98	162-164	1599	251.5
<u>b</u>	93	193-195	1590	250.5
<u>c</u>	95	150-152.5	1600	252
<u>d</u>	98	144-147	1590	253
<u>e</u>	97	202-204	1595	252
4	S,±	-N (CH ₃) ₂ · X	1590-1600 (X=Br, ClO ₄ , etc)	249-252 (X=Br, ClO ₄)
<u>5</u>	S ±	-N (CH ₃) ₂ · x¯	1550-1575 (X=Br, ClO ₄ , etc)	262 (X=ClO ₄ , TsO)

It is interesting to note that no trace of the simple dibromide was formed in the bromination of $\underline{1}$; this is in contrast to bromination of N-allylcarbamates, benzamides, and -ureas $\underline{10}$ in which the simple dibromides were formed. This is an indication of the superiority of R_2 NCSS over R_2 NCOO, PhCONH, and H_2 NCONH for neighboring-group participation.

Of the greatest mechanistic interest is the fact that the cyclization during bromination of $\underline{1}$ proceeded exclusively at the β -carbon atom via S-5 participation by dithiocarbamate function, irrespective of substitution on the γ -carbon atom. This interesting result is in stark contrast to the cyclization during olefinic protonations of $\underline{1}^{(12)}$ and γ -substituted N-allylbenzthioamides $^{(4b)}$ (6; X=S, Z=NH, R'=Ph in I) in which the position of cyclization is altered by change of γ -substituent (R $^{(1)}$). For example, C-protonation of $\underline{1b}$ (R $^{(1)}$ =H) and $\underline{1a}$ (R $^{(1)}$ =CH $_3$) resulted in an exclusive S-5 closure and a mixture of S-5 and S-6, respectively, whereas that of $\underline{1c}$ (R $^{(1)}$ =Ph) resulted in an exclusive S-6 closure. In view of the possibility for two discrete pathways for cyclization of $\underline{1}$ during electrophilic addition (see Scheme), the results of cyclization during C-protonation of 1 and 6 are

consistent with the concept of preferred cyclization to the more highly substituted carbon atom (path a). In contrast, the exclusive S-5 cyclization during bromination of $\underline{1}$ undoubtedly does not follow the Markovnikov rule. The origin of the regiospecificity of neighboring-group participation by dithiocarbamate function is interpreted on mechanistic grounds in terms of direct formation of 2 (path b) as follows.

If neighboring-group participation is well developed in transition states $\underline{7}$ or $\underline{8}$, the stabilizing effect of the developing cyclic ions should swamp out the effect of the R^1 group. Thus the ratio of S-5 vs. S-6 turns out to be determined mainly by the relative stability of 2 and $\underline{3}$ rather than by the effect

of the R^1 group. This permits us to predict an exclusive, at least preferable, formation of five-membered $\underline{2}$ since, in general, five-membered heterocyclic carbonium ions are thermodynamically more stable than the six-membered analogues which has been vigorously established for cyclic ions closely related to $\underline{2}$ and $\underline{3}$.

REFERENCES AND NOTES

- * To whom correspondence may be addressed.
- 1) Tri(hetero) substituted Carbonium Ions. X. For paper IX in this series, see K.Hiratani, T.Nakai, and M.Okawara, Bull. Chem. Soc. Japan, 47, 904 (1974).
- 2) C.U.Pittman, Jr., S.P.McManus, and J.W.Larsen, Chem. Rev., 72, 357 (1972).
- 3) S.Winstein and L.Goodman, J. Amer. Chem. Soc., 79, 4788 (1950).
- 4) (a) S.P.McManus, J.T.Carroll, and C.U.Pittman, Jr., J. Org. Chem., 35, 3768 (1970) and references cited therein; (b) P.A.S.Smith and J.M.Sullivan, ibid., 26, 1132 (1961); (c) C.U.Pittman, Jr. and S.P.McManus, Tetrahedon Lett., 339 (1969).
- 5) For neighboring-group participation by dithiocarbamate function in systems other than allylic systems, see T.Nakai, Y.Ueno, and M.Okawara, Bull. Chem. Soc. Japan, 43, 156 (1970); T.Nakai, H.Kawaoka, and M.Okawara, ibid., 42, 508 (1969); K.Hiratani, H.Shiono, and M.Okawara, Chem. Lett., 867 (1973).
- 6) <u>la-e</u> were prepared by the reaction of the appropriate allyl bromides with NaSCSN(CH₃)₂ and fully characterized. <u>ld</u> was a mixture of the <u>E</u>- and <u>Z</u>- isomers.
- 7) Ions $\underline{2a-e}$ gave satisfactory elemental analyses. The NMR spectral data of 2b-e will be described in a full paper.
- 8) Effects of ring-size on $\nu(C=N)^{9a)}$ and $\lambda max^{9b)}$ for $\underline{4}$ and its ring homologues have been fully discussed.
- 9) (a) T.Tanaka, K.Tanaka, and T.Yoshimitsu, Bull. Chem. Soc. Japan, 44, 112 (1971); (b) T.Nakai, Y.Ueno, and M.Okawara, ibid., 43, 3175 (1970).
- 10) M.Bergmann, F.Dreyer, and F.Radt, Ber., 54, 2139 (1921).
- 11) R.Andreasch, Monatsh., 5, 33 (1884).
- 12) H.Shiono, T.Nakai, K.Hiratani, and M.Okawara, unpublished results.

(Received June 19, 1974)